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Abstract

The asymptotic probability of buffer overflow for a queueing system with a Markov fluid
input and deterministic service rate is derived by way of large deviation theory. The equations
characterizing the deviant behavior are presented and examples are given for which closed form
solutions may be obtained. An independence result extends the analysis to cases where the
input is an aggregate of independent Markov fluids.

1 Introduction

We will investigate the probability of a buffer overflow for systems in which the input traffic is
modeled as a Markov fluid with an underlying chain of the birth death type. This problem has
received much attention in the literature, and many approaches have been developed to characterize,
not only the statistics of the queue length, but also the manner in which overflows occur Anick et
al. [1]. Our results are obtained by way of large deviation theory, and thus are closely related to the
work of Weiss [7]. However our approach is different and motivated by the recent work of Kesidis
[4]. Our goal is to fully explore this framework for the specific case of the birth death processes.

We consider a buffering system of size B with a deterministic service rate ¢, and an
N-rate Markov fluid source. Let X; denote the free buffer process, in the sense that it is not
constrained to be positive or below B. The evolution of X, is given by

dX
=) - (1)
where Y; is a continuous-time birth death process with states 0,..., N — 1 and rate matrix PO :
P0i7i+1 = Aia 1=0,...,N=2
Poi’i_l = MU, 1= 1,...,1\7— 1.
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A deterministic traffic rate 7(Y}) is associated with each state of the Markov chain. Note that the
traffic rate will be Markov if (-) is one-to-one, however the queue length process is not.

The goal is to compute the asymptotic probability of a buffer overflow in a busy cycle
as B — oo. If the system is stable this becomes a large deviation, and that theory becomes directly
applicable. We refer the interested reader to Bucklew [2], Kesidis [4], and references therein and
only provide a heuristic introduction to the results that we will use.

Our starting point is an expression for the relative entropy between two continuous-time
Markov chains. Let P and P° be the rate matrices of two N state continuous-time Markov chains
and denote by 7p the stationary distribution of P. Following Kesidis[5] we define the relative
entropy by

P;
H(P| P% = ZWP (Zpdlogpo’]'—l—f’od Pm').

J#

This notion permits us to explore the probability that the Markov chain P° behaves as another
chain P for an extended period of time. Additionally, one can obtain the action functional for the
empirical distributions by considering
Tps(m) = inf H(P | P)

from which we extract the exponent for the likelihood of observing a distribution 7. We wish
to compute P(X; > B) during a busy cycle. For large B, our heuristic, justifiable by convexity
arguments, is that overflows are not due to fluctuations but to a steady buildup in the queue, i.e.,
“the path to an overflow is a straight line.” Thus we evaluate the probability that PY behaves like
an alternate Markov chain P, which offers a mean traffic rate M + ¢ exceeding the buffer service
rate, for a prolonged period of time. This is obtained, once again, by considering a functional of
the excess rate M :

H*(M) = inf H(P | P°).
{P|Erpr()=c+M}

Finally, a bound on the probability of an overflow in a busy cycle of the form P(X; > B) <
exp(—BF) is obtained by considering the most likely path, or slope, leading up to this event :

(M)

F = inf
M>0

(2)

The remainder of this paper is organized as follows. In Section 2 we discuss some
properties of the relative entropy when two independent processes are involved. The required mini-
mizations are investigated in Section 3. We establish necessary and sufficient optimality conditions
and the uniqueness of the minimum for the constrained relative entropy problem. In addition we
discuss the problem of obtaining the overflow exponent directly. This provides some insight into
the nature of the solution. Section 4 includes two examples which have analytical solutions. In
Section 5, numerical procedures for obtaining the parameters of the deviant Markov chain, as well
as the exponent and the effective bandwidth are presented. We conclude with some remarks in
Section 6.

2 A preliminary decoupling result



Theorem 1 Consider the relative entropy H(Q || P) between two rate matrices, Q and P, where P
corresponds to the product of two independent Markov chains, P = P' x P?, on two spaces Xy and
Xo. Let Q' and Q? correspond to the marginal transition rates of the first and second components;
thus for example Qxl " Z?TQ (z2 | 21)Q (z1,22),(v1,02) Where z1,y1 € Ay and mq denotes the

mvariant distribution of Q). Conszder the product-form Markov chain Q' x Q*. Then :

HQ | Pt x P*) > H(Q" || P')+ H(Q*|| P*) = H(Q' x Q% P' x P?). (3)
Proof : By definition

Q || P Zﬂ-Q Z Qx,y log Pl’,y + P T,y Qx,ya
y#

where @ = (21,22) and y = (y1,y2). Using the fact that P is a product of two Markov chains we
can rewrite the entropy as

H(Q || Pt x P?*) =

Q 1,22 1,22
Z ﬂ'Q(xla $2) Z Q(l’lylé)v(l/lyl?) log % + P;;mn - Q(l’171’2)7(1/171’2)

(z1,22) Y1 #£71 1,41
1 Z T (2. Z Q( lo Q(@1,25),(¢1,02) +PE._Q
Q 1, 2 (#1,22),(z1,42) 108 P2 z2,Y2 (z1,22),(x1,42)"
(1,22) Y2 F£ T2 T2,Y2

Using the relationship

mQ(21,22) = mo(a1)Tg (s | 21),
we can rewrite the terms on the right hand side to obtain
H(Q | P x P?) =
Q z1,22),(y1,z
Z Z ﬂ-Q xl ZTFQ xQ | xl (z1,22) y171’2)10g % + Pll’1,y1 - Q(9017902)7(y17902)

T1 y1 £z T1,Y91

+ the symmetrlcal term.
Recall that we have defined Qxl " Z?‘[’Q (22 | 21)Q (21,22),(v1,2) and sz) ., Similarly. Q' corre-

sponds to a rate matrix with the average transition rates of () on the first component. With this
definition in mind and using Jensen’s inequality on the convex function zloga we obtain

1
HQUP P 2 3imq(en) D0 Qb 108 1y + Py = Qi

Y1 ;ﬁl’l T1,Y91

—|— the symmetrical term.

Finally, note that in fact
916171/1 = Z TQ(72 | 21)Q (21,0),(41,92)

2,2
so it follows that mg(21) is the invariant distribution for Q'. Thus,

1

Zﬂ-Q (1) Z Ql’ulﬂ thyl + Paz1§1,y1 - 9151,1/1 = H(Ql [ Pl)a

Y1 ;ﬁl’l T1,Y91



and a similar expression is found for the symmetrical term. We have established
HQ | P'x P) > H(Q || PY)+ H(Q? || P?) = H(Q' x Q| P x P2).

a

Corollary 1 Consider the relative entropy H(Q || P) between two rate matrices, () and P, where
P corresponds to the product of two independent Markov chains, P = P' x P?, on two spaces X}
and Xy. Suppose that the traffic rate corresponding to each product state r(xy,x2) is additive i.e.,
there exist functions r1 and ro such that

V(21,22), (21, 22) = r1(21) + r2(22). (4)
Then the minimizer Q* of H(Q || P) subject to a mean traffic constraint
M = E,TQT(Xl,XQ) = Eﬂ'QTl(Xl) —|— E,TQTQ(XQ) = M1 —|— M2 (5)
s of product-form.
Proof : Suppose ()., is a minimizer satisfying the constraint. Then by the previous

theorem, there is a corresponding product-form Markov chain Q' x Q% with the same marginal
distributions, whence still satisfying the constraints, but with a lesser or equal relative entropy. O

Corollary 2 Under the assumptions of Corollary 1

inf H Pl x P =
1Q[Ergr(X1,X2)=M} @l )

inf  H(Q'| P")+ inf  H(Q*|| Pz)}- (6)

inf
{(M1,Mz)| M1+ M2=M} {{Q1 By 71 (X1)=M1 } Q2| B 72 (X2)=M2}

These results obviously hold in general for N independent Markov fluid sources with
additive rates. Intuitively the decoupling result implies that the most likely way for independent
Markov chains to deviate from their typical behavior is independently.

This constitutes a justification of the additive property of relative entropy for indepen-
dent Markov chains assumed in Kesidis [4], leading to the notion of effective bandwidth.

3 Solving the optimization problems

In this section, necessary and sufficient optimality equations are derived for the following minimiza-
tion problems

* _ s 0
B = il H(P| P (7)

N-1
where E, r(-) = Z m;7;, and
=0

e e AP (8)

C {P|Erpr()>c} Expr(t) — ¢



In computing these infima, we only consider rate matrices P which have the same graph
as the initial Markov Chain PP, i.e., the set of BD processes with rates A;, ;. We in fact restrain
ourselves to structure-preserving parametric changes of measure.

The stationary distribution of such a P is given by Neuts [6] :

AOATL - A= .
T; = WOM, i>1, (9)
Hipo - -

with

The expression for the relative entropy between P and PP is now

N-1

H(P | PO) = ; (Ailog;—l—)\?—/\i—l—mlog;—I—,u?—,ui) (11)

Il
=]

B

Z
i

i (i + i),

~
Il
=]

with
A o
¢; = Ailog 30 + A7 — Ay

s

ll

12
pilog o + i = pi:

and the convention that Ay_1 = ug = 0.

3.1 Minimization of the relative entropy under constraints

We first solve problem (7).
This is done by forming the Lagrangian :
L(P,P°%) = H(P || P°) + K(E,r(-) = (M + ), (12)
where K is a Lagrange multiplier.

The following two lemmas enable us to derive simple forms for the first order optimality
conditions.

N-1
Lemma 1 Define Sy = Z m;. Then

=k
or; ;
o, - /\*k(l{i—lzk} — Sk41)s (13)
or; 5

o=~ (Lgs — Sk). 14

ope w20 ) (o



Lemma 2 Define
N-1

ap = Y mi(di+ i+ Kry). (16)

i=k+1
Then the first-order optimality equations for problem (7) are

. A
— Syt (H*(M) + K(M + ¢)) + apyr + 71\; log 7’; = 0, (17)
k
Stpr(H*(M) + K (M + €)) = appr + mgrpiag log et = 0, (18)
k+1

fork=0,...,N —2.

The derivation of these equations as well as the algebra required to establish the follow-
ing set of optimality conditions have been placed in the appendix.

Proposition 1 The first-order optimality equations for problem (7) are the following :

Mefikgr = ApRgr, k=0,...,N =2 (19)
Me+pp = —H M)+ K(rg—(M+e)+ X +ud, k=0,...,N—1; (20)
S mry = M+t (21)

N-2

H (M) = (milA = )+ miga (s — i) - (22)

1=0

The last equation defining H*(M) is in fact redundant, since it can be obtained by adding the
second set of equations weighted by coefficients 7.

Moreover, we have the following proposition.

Proposition 2 Define {m;} as the set (ng,...,7n—1) and {ui} similarly. Consider H(P || P°) as

a function of {my} and {ur}. Then H(P || P°) is convex in {ui} and, furthermore, the function

H*({ny}) defined as H*({my}) = ?i%H(P || P°) is convez in {7y}, so that the optimality equations
ik

above actually define a unique minimum.

The proof is given in the appendix.

This proposition is related to a standard result in information theory regarding the
convexity of the relative entropy D(p || ¢) in the pair of probability distributions (p,q) over a

(z)
(z)

the infimum of problem (7) exists and is unique over the class of blrth death processes we have
considered. This fact shows that among the set of all trajectories with rate M + ¢ over a period
T generated by parametric changes of measure, there exists one specific trajectory for P° that is
asymptotically stricly more likely than the others, assuming that a large deviation principle holds
for such a set Bucklew [2]. By Laplace’s argument, the probability of PY to fire at a mean rate
M + c over a period T is then asymptotically equal to the probability of this most likely trajectory
when T is large.

discrete space, this quantity being defined by D(p || q) Zp log Cover [3]. It implies that



3.2 Direct computation of the exponent

Suppose now that we wish to directly compute the exponent, i.e., to solve problem (8) :

P e r)

= . 23
{P|Erpr()>c} Lrpr() — ¢ (23)

We will prove successively that this infimum may be characterized by a set of equations
similar to those derived before and the minimum is unique.

Proposition 3 A necessary and sufficient set of optimality equations for problem (8) is

Almuk+1 = A2M2+17 k=0,...,N -2 (24)
N-1
H¥(e =) + (AL = Aet = i )(X mirs—) = 0, k=0,...,N—1 (25)
Nl
Z Ty > ¢ (26)
i=0
A > 0, k=0,...,N -2, (27)
N=2
with, as before, H* = 3 (mi(A) = o) + 7o (141 — pig1)).
=0

The proof is similar to that of Proposition 1 with a simplification due to the fact that the Lagrange
multiplier is 0 at the optimum because the inequality constraint will not be saturated.

These optimality equations are necessary and sufficient from the existence and unique-
ness argument in the previous problem. Indeed, the minimum will be attained in a point P* such

that F; .. 7(:) = ¢ 4+ € for some stricly positive ¢ and, moreover,

H(P*|| P% = inf H(P | P%),
(PN Py = | inf L HPIPY)

which is unique by Proposition 2.

An algorithm is suggested at the end of this paper to compute the solution to these
equations.

4 Examples

4.1 Sum of on-off Markov fluid sources

We first consider the case where the input traffic to the buffer is an aggregate of N — 1 two-state
Markov chains. Each of these will contribute a traffic rate of ag when off and a¢; when on. A source
turns on with intensity A\° and off with with intensity u°. The aggregate Markov fluid, corresponds
to a birth death process with the following parameters :

A= (N =1-49)AY%

K3

p = i’



and with rj linear in k, i.e. 7, = ak + 3, where a = a; — ag and § = (N — 1)aq.
Proposition 4 characterizes the solution to the constrained minimization of the relative

entropy.

Proposition 4 Define a = a(N — 1). In the on-off case, the optimal solution is :
Ai = (N=1-1)\
pi =i,

with

o~ (1 +0)+5)
- otz
The entropy is given by
B0 = (O = 1) ({00 -0+ 400 - 0). (28)

H*(M)is a sum of N —1 equal terms corresponding to each of the N — 1 two-state Markov fluids
that constitute the input traffic. Note that this result could have been obtained directly using
Theorem 1.

The exponent is given in the following proposition.

Proposition 5 Denote the mean offered traffic rate by v = ﬁa + (3. Suppose v < ¢, i.e. the
system 1is stable. Then :
20 0\(e — B) — \O

(c=B)atf—e)

This result can be compared to both Weiss [7] and Anick et al. [1]. In the first case let
[ = 0, and consider a limit as the number of sources increases, N — oo, such that the mean offered
traffic rate is constant and equal to % < ¢ < 1. This corresponds to letting a = 1, s0 « = 1/N,
and the exponent becomes
10 20

1—c¢ c

E=(N-1) ). (30)

This is identical to the result obtained by Weiss, in the case of large buffers, and a large number of
sources, from a conceptually different point of view [7].

We obtain the asymptotics established by Anick et al. by rewriting our exponent as
follows. Note that § = ['iin, @ + 3 = 'nax, are respectively the minimum and maximum traffic the
aggregate source can offer. One can then rewrite the exponent, in their intuitively pleasing form :

E=(N- 1)(c(—/\()riif)()()r(;;7—)c)‘ (31)



4.2 M/M/ooc Markov Fluid Source

In our second example, we consider an aggregate source in which sources arrive at rate A\° and con-
tribute a traffic rate . They turn off after an exponential period with mean Ml—o The corresponding
a birth death process has the following parameters :

A=A
p = il

and with ry linear in k, i.e., ry = ak.

Proposition 6 In this case, the optimal solution is :

with

1
T (x\oqu - C) ’
o
The entropy is given by :
A
H* = (A=A + ;(uo—u)- (32)

Once again for this case the large deviation exponent can be found and is given by the
relatively simple form that follows.

Proposition 7 Suppose pla < c, i.e. the system is stable. Then

0 0
I A
P=——-—. 33
0 . (33)
This result is only true when N = oo but of course will hold for systems, processing a

large number of calls N.

5 Numerical solution

We present herein an algorithm to compute the exponent and the effective bandwidth for the
general case. Returning to equations (24), denote gz = A)_,uf for k = 1,..., N — 1, and rewrite
an equivalent set of equations :

N-1
H*(c—ro) + (A) = Ao)(D_ miri—¢) = 0; (34)
=0
c—r
OF = A+ al - 5 (c_rz)(Ag—)\o),k:O,...,N—l. (35)



The last series of equations may be rewritten as :

Mot 3B =0 = (S22 = Aul), k=0 N -
An_1 cC—To

By setting A, = %: for k =0,..., N — 2, we obtain

u Vi
g = Ap(o), (36)
Uk Uk—1

which can be written in a matrix form as

u . A (/\0) — Uk—1 _ Uk—1
)0 ) () e(z)

where Ax(A%) is 2 x 2 dimensional.

Then, by induction

( Uk ) = Ap(Xo)Ar-1(Xo) ... A1 (o) ( ?;0 ) .

Uk 0

For a given choice of Ay, A,...,Any_2 may be computed recursively, and pq,...,un_1
can be obtained by way of equations (24). However a boundary condition must be satisfied. In
particular, we require that Ay_y = 0, to be consistent with our set-up. Thus, the unknown Ag must
be a root of the equation

UN-1 = 07
or
A
(10 )AN_l(/\O)AN_Q(/\O)...Al(/\o)( 0 ) =0, (38)
such that
Ak > 0, k=0,...,N—1;

N-1
Zﬂi"'i > C.
1=0

This equation is in fact a polynomial of order N in Ag, so that the algorithm reduces
to the computation of the roots of this polynomial. Since we have established the existence and
uniqueness of the solution, there can be only one root satisfying these conditions. Let A§ be this
root. The exponent is then obtained from equation (34) :

H 5= A3

N-1
E ;T —C
1=0

E = (39)

CcC—To

We turn now to the computation of the effective bandwidth. This is defined [4] as the

function a(6) such that :
H*

=6 (40)
Z miri — a(d)

10



a(8) can be interpreted as the service rate required to guarantee that the given source will have an
asymptotic probability of overflow less than or equal to e=5¢.

From equations (34), we obtain

A5 = Af

0= a(é) —ro

or

Ay = 8(a(6) — 7o) + AD.

Then, a similar calculation to the above gives :

()= (Mm@ () g ()

and the equation determining a(¢) as a function of § becomes

(1 0) Anca(6,a(8) An—a(8,a(6)) .. Ay (4, a(6)) ( oe(8) = ro) + A6 ) —0, (42

with the constraints

6 Conclusions

The problem of computing the asymptotic probability of buffer overflow for a queueing system fed by
N independent Markov fluids has been addressed. It has been shown that when an overflow occurs
as a large deviation, independent sources actually deviate in an independent fashion, resulting in
the notion of effective bandwidth discussed in [4]. Thus it suffices to analyze the single source
case. Necessary and sufficient optimality conditions have been derived characterizing the deviant
behavior, when the underlying Markov chain is of the birth death type. Closed-form solutions
have been found, when the input is the aggregate of on/off sources, and when it corresponds to a
system in which sources arrive as a Poisson process, and leave independently after an exponential
period. In the former case, similar results have been obtained by different approaches. Numerical
algorithms are suggested for computing the actual deviant behavior for the general case. These
may be of interest for quick simulation. Further work is required on this topic.
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Appendix
Proof of Lemma 1 : Define :
p AoATL - Ao
' Hipg -
We note that
0P, P;
F VR Ve G
or;, PZ-1 _
opr o UM
ince T = — = 5,
P
i=0
OP; . OP
om (aAkP - PZaTk)
oy P2
N-1
P; P P;
= pag 2R T p > P, 12k
=0
Lo
= Yk(l{i—IZk} — Skt1)-
Derivatives with respect to puj follow in a similar fashion. a

Proof of Lemma 2 : We first compute the derivatives of the Lagrangian with respect to
Ap,k=0,...,N -2

oy Sta1)(6i + i) + w1 (’\’“>+KNZ_1 a Sk+1)
- = ~(Lici>k — i+ ;) + T log( g i1k — T
INr 2, 1>k k41 k108 /\2 2 AL 1>k k41
ey (N2 N-1 L [N A
— /\+ (Z mi( i+ i)+ Y mm) + 4 D (St i+ Kri) | + 7 log(1o)
o\ iz i=0 k \i=k+1 k
S B A
LA (M) + K(M + ¢)) + 54 4 mplog(25).
/\k /\k )‘k

12



In the same vein, for k =1,..., N —1:

oL Si

- 493 HE
— = H*(M)+ K(M +¢)) — —= + 7 log(=).

I
So that we finally get the following system for £ = 0,..., N — 2 stated in lemma 2 :

Sk41
Ak

A
(H*(M) + K(M +¢)) + aizl + 7 log(/\—g) — 0
k

s :
SELHA (M) 4+ K(M +¢)) = 54 oy log(PEH) = o
Mkt Pkt .

a

Proof of Proposition 1 : By multiplying the first and second type of equation obtained
in Lemma 1 by Ay and pz4q respectively, and adding them together, we obtain

A
T Ak log /\% + Tht1 k41 log MS-H =0.
k Hiqq
Since
Ak
T = Tk
* HE+1 ’
we have \
k HE+1
1ogF + log 0+ = 0.
k Hiy1
In other words :
Akp41 = /\2u2+1,k =0,...,N -2 (43)

We now look for another set of characteristic equations. There are obtained by sub-
tracting two consecutive first equations (7) with indices k and k + 1, to first get

i A Ao
(5% = Spy (H* (M) + K(M + ¢)) + (pp1 — ag) + A log =8 — 11 Ay log S5 = 0.

AR ARt
Equations (43) yield
Ak—1 AR 1] Mk
log =lo = —log —
Abq AR 1k 2
and on the other hand
B Ak—1
T = Mk—1
Kk

So that the subtraction above reads
3 B A
T(H*(M) + K(M 4+ ¢)) — np( ¢ + v + Kri) + 7g (z\klog /\—g + g log Z’S) =0.
k k

Then, after substitution of ¢4 and v, by their expressions, we get
M+ =—H*"(M)+ K(rp, —(M+¢c)+ 20+ 4, k=0,...,N -1, (44)

with the usual convention /\?\,_1 = An_1 = ud = po = 0.

13



Returning to the definition of H*(M

2

H*(M)

hg

~
Il
=]

T (/\Z 10g %

), we obtain

+ A — /\+uzlogu + ) - )

N—2 N N—2

= T ()\i log /\78 + A - )\?)) + Z Tit1 (NH—I log :u'g+1 n :u?+1 B Ni+1)
=0 i =0 Hit1
N-=2

= (Wi(A? = Ai) + Tigr (i — Hi+1)) :
1=0

Proof of Proposition 2 :

: the existence and uniqueness of a single minimum :

Consider again the initial constrained minimization problem :

H*(M) inf

{P|Epr(:)=M+c}

To prove that the optimality equations derived above actually define a minimum that is moreover
unique, change variables is required since there is no direct convexity result on H as a function of

the set of parameters (A;, ;). Define first p; = fil ,

H(P | P?).

AoAL .. A
T, =T
Hipd - . s
with
)\OAl
To = 1 +
( ZZ; Mo -
. 7n'+17 i=0,..
T

On the other hand

i = pittigr, 1=0,..

Then
N-1 i1,
T; Mit1
H({mi}, {pip}) = Y 7 ( i 10gT+
=0 %
the constraints being as follows :
N-1
Z miri = M+ ¢
N-1
7r2 = 1
T Z 0, 1=

defining a constraint set C'as.

14

= TopPopP1 - -

-Pi-1,

., N — 2. We see that, since

1> 1

-1
u)’

LN — 2.
LN -2,
)\0_ Ti41

LN =1,

M1t 10gﬁ + 4 - Hi) 5



The unconstrained minimization over the variables ;41 is performed without constraint
and we have seen that, for a given set of {r;}, the optimum is given by

Hi+1 =

i1 e Mitl 0 Titl
i = — piprlog 5+ A — i
Gi(pit1) 7, Mot log A
Hit1
Yip1(pit1) = i 10gluT++H?+1 — Mit1
i+1

are convex.

We replace the p;41 by their optimal values and turn to a constrained problem in 7; :

N-=2 Tt 2
H*({m:}) = Z?ﬂ( A — [ u?+1)

=0 g

N=2 2
= Z (\/)\?ﬂ'z \/7r2+1)u%-|-1)

=0

under the same constraints as before.

The next step is to prove that this function is strictly convex in the variables {7;} on
the set C'py. But in fact, H is a function of N variables that can be written a sum of functions of 2
variables. Fach one of these functions is strictly convex in its two variables, so the sum is strictly
convex in all the variables. H*({7;}) is then strictly convex, and the constraint set Cps is convex.
H* then admits a unique local minimum that is at the same time the global minimum. And then
the optimality equations (19) define a single minimum. O

Proof of Proposition 4 : For simplicity we consider the case § = 0. One can verify that
the proposed solution :

Ai = (N=1-1)\
pi =i

with

\ - (Aou()(a(ﬁf—]é)—M))%;

o= (’\O“O(a(Af—]{)—M)Y’

satisfies the optimality equations (19). Then, noting that the mean m of such a birth death process
is equal to

A
= - 1)
m = (N ))\ v
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we find that :

2
5

H*(M) = L% (/\? — )+ Tipa (H?+1 — Pit1)

5]

N=2
= 3w (V= 1= D00 N+ T 6+ D i)
= (V= DO = A1 = o) = (00 = X — (N = Do) + (60 =
= (W= (=N T+ =)
= - (F - - w).

Proof of Proposition 5 : Given the expression obtained above, and since

1

M+ e 2

A= (A° 0)
( . a—(M+e¢)

in this specific case, the ratio to be minimized becomes

2
(M) _ (M 4+ s (a— (M +e)A°
Cancelling the first derivative of this ratio with respect to M yields

1, M4+c _1 (Ma—(M+c)a 1, ge—(M+¢) _1 (—Ma—a(la— (M +c¢))
§(M Ma ) 2( (Ma)? ):20\ Ma ) 2( (Ma)? ) (48)

Simplifying on both sides and taking the squares, we find that the optimal M is given by

N

a
M +c= W. (49)

By substitution we find the exponent :

N2
Eo_ N -1 01_(0)%(1 c
(a—c)— po(a=9) a P c
0 0 _\0
(0 0 - Xa)
cla—c)

In the case where [ is nonzero one can simply replace ¢ by ¢ — 3. a

Proof of Proposition 6 : One can easily verify that the proposed solution :

A = A,
Wi = i,
with

1
A = (AOHOM+C)27

(87
%

_ 20,0 a )

H ( HM—I—C )



satisfies the optimality equations in Proposition 1. Using the fact that the invariant distribution

for an M /M /oo process is Poisson with parameter p = %, and hence mean p we find that

HY (M) = Y mi (A = Ni) + miga (B4 — piga)
=0

= 2w (A= A) + mig (1 — p)
1=0

= m (A=) + 2(#0 ~ H)-

O
Proof of proposition 7 : Since
M [AOLO( M
H*(M):AO‘I‘,LLO +C_2 N’( —I_C)’
o o
we must minimize )
VO _ /0 (M+e)
oy _ (V0= Vhe )
M M '
Cancelling the first derivative of this ratio with respect to M yields
2
M ‘I‘ C = 670
op
By substituting one obtains the exponent :
* 0 0
B =it TTOD _ 7 X7
M>0 M o c
O
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